Leray–schauder Degree: a Half Century of Extensions and Applications

نویسندگان

  • Jean Mawhin
  • Jean Leray
  • J. Mawhin
چکیده

The Leray–Schauder degree is defined for mappings of the form I−C, where C is a compact mapping from the closure of an open bounded subset of a Banach space X into X. Since the fifties, a lot of work has been devoted in extending this theory to the same type of mappings on some nonlinear spaces, and in extending the class of mappings in the frame of Banach spaces or manifolds. New applications of Leray–Schauder theory and its extensions have also been given, specially in bifurcation theory, nonlinear boundary value problems and equations in ordered spaces. The paper surveys those developments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Leray–schauder Principles for Compact Admissible Multifunctions

We establish the Leray–Schauder type theorems for very general classes of multifunctions, which are called admissible. Our admissible classes contain compositions of important multifunctions in nonlinear analysis and algebraic topology. Moreover, our arguments are elementary, without using the concept of degree of maps or theory of homotopy extensions. The Leray–Schauder principle [LS], one of ...

متن کامل

Existence and Asymptotic Behavior of Solutions for Weighted p(t)-Laplacian Integrodifferential System Multipoint and Integral Boundary Value Problems in Half Line

This paper investigates the existence and asymptotic behavior of solutions for weighted p t Laplacian integro-differential system with multipoint and integral boundary value condition in half line. When the nonlinearity term f satisfies subp− − 1 growth condition or general growth condition, we give the existence of solutions via Leray-Schauder degree. Moreover, the existence of nonnegative sol...

متن کامل

Existence of Solutions for a Class of Variable Exponent Integrodifferential System Boundary Value Problems

This paper investigates the existence of solutions for a class of variable exponent integrodifferential system with multipoint and integral boundary value condition in half line. When the nonlinearity term f satisfies subp− − 1 growth condition or general growth condition, we give the existence of solutions and nonnegative solutions via Leray-Schauder degree at nonresonance, respectively. Moreo...

متن کامل

Domain Variation for Certain Sets of Solutions and Applications

(or systems of equations) with either Dirichlet or Neumann boundary conditions continue if Ω is perturbed in quite a general way. More precisely, in the earlier work, we showed that if the set of solutions has non-zero Leray–Schauder degree, then it does continue if Ω is perturbed. Here we prove similar results when we consider sets of solutions of non-zero homotopy index (or Morse numbers), wh...

متن کامل

Leray–schauder Type Alternatives and the Solvability of Complementarity Problems

We present in this paper several existence theorems for nonlinear complementarity problems in Hilbert spaces. Our results are based on the concept of “exceptional family of elements” and on Leray–Schauder type altrenatives.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999